Knowledge base dedicated to Linux and applied mathematics.
Home > Mathematics > Derivative of a function > Derivative of square root of x
All the versions of this article: <English> <français> <italiano>
The derivative f’ of square root of x defined by f(x)=√x is for all x strictly positive f’(x)=1 / 2√x
The derivative $f’$ of the function $f(x)=\sqrt{x}$ is:
$$ \forall x \in ]0,+\infty[ ,\quad f’(x) = \frac{1}{2\sqrt{x}} $$
$$ \begin{aligned} \frac{df}{dx}=&\lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h}\\ =&\lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h} \cdot \frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}} \\ =&\lim _{h \rightarrow 0} \frac{(\sqrt{x+h}-\sqrt{x})(\sqrt{x+h}+\sqrt{x})}{h(\sqrt{x+h}+\sqrt{x})}\\ =&\lim _{h \rightarrow 0} \frac{x+h-x}{h(\sqrt{x+h}+\sqrt{x})}\\ =&\lim _{h \rightarrow 0} \frac{h}{h(\sqrt{x+h}+\sqrt{x})}\\ =&\lim _{h \rightarrow 0} \frac{1}{\sqrt{x+h}+\sqrt{x}}=\frac{1}{2 \sqrt{x}} \end{aligned} $$
We conclude that:
$$ \forall x \in ]0,+\infty[ ,\quad f’(x) = \frac{1}{2\sqrt{x}} $$