Math-Linux.com

Knowledge base dedicated to Linux and applied mathematics.

Home > Mathematics > Derivative of a function > Derivative of 1/x

Derivative of 1/x

All the versions of this article: <English> <français> <italiano>

The derivative f’ of the function f(x)=1/x is: f’(x) = -1/x^2 for all nonzero real numbers x

Derivative of 1/x

The derivative $f’$ of the function $f(x)=\dfrac{1}{x}$ is:

$$ \forall x \in \mathbb{R}^* , f’(x) = -\frac{1}{x^2}$$

Proof/Demonstration

Let $x \in \mathbb{R}^*$

$$ \begin{aligned} \frac{df}{dx}=&\lim_{h \rightarrow 0} \frac{\displaystyle\frac{1}{x+h}-\frac{1}{x}}{h}\\ =&\lim_{h \rightarrow 0} \frac{\displaystyle \frac{1}{x+h}\cdot \frac{x}{x}- \frac{1}{x}\cdot \frac{x+h}{x+h}}{h}\\ =&\lim_{h \rightarrow 0} \frac{\displaystyle\frac{x-(x+h)}{x(x+h)}}{h}\\ =&\lim_{h \rightarrow 0} \frac{\displaystyle\frac{-h}{x(x+h)}}{h}\\ =&\lim_{h \rightarrow 0} \frac{\displaystyle\frac{-1}{x(x+h)}}{1}\\ =&\lim_{h \rightarrow 0} \frac{-1}{x(x+h)}=\frac{-1}{x(x+0)}\\ =&-\frac{1}{x^{2}} \end{aligned} $$

Then we have:

$$ \forall x \in \mathbb{R}^* , f’(x) = -\frac{1}{x^2}$$

Also in this section

  1. Chain rule proof - derivative of a composite function
  2. Derivative of 1/x
  3. Derivative of arccos x
  4. Derivative of arcsin x
  5. Derivative of arctan x
  6. Derivative of cos x
  7. Derivative of exp x, e^x
  8. Derivative of exp(u) , exp(u(x))
  9. Derivative of inverse functions
  10. Derivative of ln u
  11. Derivative of ln x
  12. Derivative of sin x
  13. Derivative of square root of x
  14. Derivative of tan x
  15. Derivative of u*v , u times v
  16. Derivative of u/v
  17. Derivative of x power n
  18. Derviative of 1/u