Knowledge base dedicated to Linux and applied mathematics.
Home > Latex > FAQ > Latex - FAQ > Latex binomial coefficient
All the versions of this article: <English> <français>
The binomial coefficient can be interpreted as the number of ways to choose k elements from an n-element set. How to write it in Latex ?
The binomial coefficient $\binom{n}{k}$ can be interpreted as the number of ways to choose k elements from an n-element set. In latex mode we must use \binom fonction as follows:
\frac{n!}{k!(n - k)!} = \binom{n}{k} = {}^{n}C_{k} = C_{n}^k
$$\frac{n!}{k!(n - k)!} = \binom{n}{k} = {}^{n}C_{k} = C_{n}^k$$
\frac{n!}{k!(n - k)!} = \binom{n}{k}
$$\frac{n!}{k!(n - k)!} = \binom{n}{k}$$
where A is the permutation
\frac{A_n^k}{k!} = \binom{n}{k}
$$\frac{A_n^k}{k!} = \binom{n}{k}$$
where
A_n^k = \frac{n!}{(n-k)!}
$$A_n^k = \frac{n!}{(n-k)!}$$ are the different ordered arrangements of a k-element subset of an n-set
\binom{n}{k} = \binom{n-1}{k-1} +\binom{n-1}{k}
$$\binom{n}{k} = \binom{n-1}{k-1} +\binom{n-1}{k}$$