Knowledge base dedicated to Linux and applied mathematics.
Home > Latex > FAQ > Latex - FAQ > LateX Derivatives, Limits, Sums, Products and Integrals
All the versions of this article: <English> <français>
How to write derivatives in LateX?
How to write sums in LateX?
How to write products in LateX?
How to write integrals in LateX?
How to write LateX Derivatives ?
Definition | Latex code | Result |
---|---|---|
First order derivative | $f'(x)$ |
$f’(x)$ |
Second order derivative | $f''(x)$ |
$f’’(x)$ |
K-th order derivative | $f^{(k)}(x)$ |
$f^{(k)}(x)$ |
Partial firt order derivative | $\frac{\partial f}{\partial x}$ |
$$\frac{\partial f}{\partial x}$$ |
Partial Second order derivative | $\frac{\partial^2 f}{\partial x^2}$ |
$$\frac{\partial^2 f}{\partial x^2}$$ |
Partial k-th order derivative |
|
$$\frac{\partial^{k} f}{\partial x^k}$$ |
How to write LateX Limits?
Definition | Latex code | Result |
---|---|---|
Limit at plus infinity | $\lim_{x \to +\infty} f(x)$ |
$$\lim_{x \to +\infty} f(x)$$ |
Limit at minus infinity | $\lim_{x \to -\infty} f(x)$ |
$$\lim_{x \to -\infty} f(x)$$ |
Limit at $\alpha$ | $\lim_{x \to \alpha} f(x)$ |
$$\lim_{x \to \alpha} f(x)$$ |
Inf | $\inf_{x > s}f(x)$ |
$$\inf_{x > s}f(x)$$ |
Sup | $\sup_{x \in \mathbb{R}}f(x)$ |
$$\sup_{x \in \mathbb{R}}f(x)$$ |
Max | $\max_{x \in \[a,b\]}f(x)$ |
$$\max_{x \in \[a,b\]}f(x)$$ |
Min | $\min_{x \in \[\alpha,\beta\]}f(x)$ |
$$\min_{x \in \[\alpha,\beta\]}f(x)$$ |
How to write LateX sums?
Definition | Latex code | Result |
---|---|---|
Sum | $\sum$ |
$$\sum$$ |
With \limits | $\sum\limits_{j=1}^k A_{\alpha_j}$ |
$\sum\limits_{j=1}^k A_{\alpha_j}$ |
Without\limits | $\sum_{j=1}^k A_{\alpha_j}$ |
$\sum_{j=1}^k A_{\alpha_j}$ |
Sum from 1 to n | $$\sum_{i=1}^n$$ |
$$\sum_{i=1}^n$$ |
Sum off n first integers | $$\sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6}$$ |
$$\sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6}$$ |
Double sum | $$\sum^k_{i=1}\sum^l_{j=1}\,q_i q_j$$ |
$$\sum^k_{i=1}\sum^l_{j=1}\,q_i q_j$$ |
How to write LateX Products ?
Definition | Latex code | Result |
---|---|---|
Product | $\prod$ |
$$\prod$$ |
With \limits | $\prod\limits_{j=1}^k A_{\alpha_j}$ |
$\prod\limits_{j=1}^k A_{\alpha_j}$ |
Without \limits | $\prod_{j=1}^k A_{\alpha_j}$ |
$\prod_{j=1}^k A_{\alpha_j}$ |
Product from 1 to n | $$\prod_{i=1}^n$$ |
$$\prod_{i=1}^n$$ |
Product off n first integers | $$\prod_{i=1}^n i^2{6}$$ |
$$\prod_{i=1}^n i^2$$ |
Double product | $$\prod^k_{i=1}\prod^l_{j=1}\,q_i q_j$$ |
$$\prod^k_{i=1}\prod^l_{j=1}\,q_i q_j$$ |
Definition | Latex code | Result |
---|---|---|
Integral | $$\int$$ |
$$\int$$ |
Integral limits | $\int_{a}^b f(x)dx$ |
$$\int_{a}^b f(x)dx$$ |
Double integral | $$\iint$$ |
$$\iint$$ |
Double integral with limits | $$\int_{a}^b\int_{c}^d f(x,y)dxdy$$ |
$$\int_{a}^b\int_{c}^d f(x,y)dxdy$$ |
Double integral with dots | $$\idotsint$$ |
$$\idotsint$$ |
Triple integral | $$\iiint$$ |
$$\iiint$$ |
Quadruple integral | $$\iiiint$$ |
$$\iiiint$$ |
Contour integral | $$\oint$$ |
$$\oint$$ |
To define such integrals, you must use wasysym package
$$\oiint \oiiint$$